

Presented by Dr. Vinod Atmaram Mendhe

Chief Scientist & HORG/Prof AcSIR Non-Conventional Gases Group CSIR-CIMFR, Dhanbad, Jharkhand

Email: vamendhe@cimfr.res.in / vamendhe@gmail.com

Research Students: Dr. Sameeksha Mishra, Ms. Sangam Kumari, Ms. Manisha Kumari, Mr. Sayed W. Abrar, Mr. Arnab Bordoloi

CO₂ Emissions in India

India / CO2 emissions per capita

1.89 metric tons (2022)

Sector	Approximate CO ₂ Emissions Share	CO ₂ Emissions in Million metric tones
Energy (Power Generation)	42%	1800
Industry	24%	1028.5
Agriculture, Forestry, and Land Use	8%	342.8
Transport	14%	600
Residential & Commercial	4%	171.4
Waste	4%	171.4

Emissions from top 15 states

CO₂ Capturing Status in India

India's existing CO₂ capture capacity is minimal, primarily confined to specific industrial applications:

- **Urea Production**: Approximately 24 million metric tons per annum (mtpa) of CO₂ is captured during ammonia-to-urea conversion processes.
- Gasification Plants: Reliance Industries in Jamnagar (10 mtpa) and JSPL in Angul (2 mtpa) capture CO₂ during petcoke and coal gasification, respectively. However, much of this CO₂ is currently released into the atmosphere rather than being utilized or stored.
- Steel Plant: Tata Steel in Jamshedpur capturing 5 metric tons per day of CO₂ from blast furnace gases.
- **Power Plant:** NTPC's Vindhyachal Super Thermal Power Station in Madhya Pradesh, has initiated a pilot carbon capture project. This project aims to capture 20 tonnes per day (TPD) of CO₂ and conversion to methanol.

Principles of CO₂ Geo-Storage

- i. CO_2 geo-storage involves capturing CO_2 from emission sources or the atmosphere and isolating it underground to prevent its release.
- ii. Underground geo-storage is a viable sequestration approach, converting captured CO_2 into liquid form (supercritical) and injecting it deep into geological formations.
- iii. However, injecting large volumes of high-pressure liquid CO₂ underground carries risks, as it can disrupt the reservoir's mechanical balance.
- iv. Therefore, careful selection of the precise approach is crucial for effective and safe CO_2 geostorage.

Capture CO₂
From emission
sources or atmosphere.

Convert to LiquidFor efficient injection.

Inject UndergroundInto suitable geological formations

Secure IsolationPreventing atmospheric release.

Underground CO₂ Geo-Storage Options

• Saline Aquifers:

Porous rocks with saltwater, high storage potential.

• Depleted Oil/Gas Reservoirs:

Known geology, existing infrastructure.

Unmineable Coal Seams:

Adsorption trapping, enhanced methane recovery.

Basalt Formations:

Mineral carbonation for stable storage.

• Hydrate Storage:

Solid crystalline structures in deep oceans/permafrost.

Technological Advancements in CO₂ Geologic Storage

- High resolution subsurface imaging like use of 3D and 4D seismic surveys for detailed reservoir mapping and monitoring.
- Geochemical kinetic modeling to better understanding of CO₂-rock-brine interactions helps in selecting suitable formations and predicting long-term stability.
- Fiber-optic sensors can be deployed in wells for real-time temperature and pressure monitoring.
- Advancement in in-situ mineralization where CO₂ reacts with formation minerals to form stable carbonates. Pilot projects like CarbFix (Iceland) show successful and rapid mineral trapping of CO₂ in basalt.
- Multi-physics simulators for better prediction of CO₂ behaviour in the subsurface (fluid flow, geochemical reactions, mechanical deformation).
- Sleipner (Norway) and Snøhvit: Long-term offshore saline aquifer storage, Illinois Industrial CCS Project (USA): Injection into deep saline formations. Gorgon Project (Australia): One of the world's largest CCS operations with lessons on technical and regulatory challenges.

CCUS Advancements in India

- i. Government Initiatives and Policy Framework India is working on a national (CCUS) mission to provide financial incentives. NITI Aayog has proposed a CCUS policy involving industry clusters.
- ii. Industrial Collaborations OIL plans to capture CO₂ emissions from its natural gas field in Rajasthan and store it in nearby dry wells. NTPC has established a facility that captures and converts 20 tonnes of CO₂ to methanol daily.
- iii. India's total unconstrained CO₂ storage potential is estimated at 629 gigatonnes (Gt), with 326 Gt in deep saline formations and 316 Gt in basalts.
- iv. Oil and Natural Gas Corporation (ONGC) has signed a Memorandum of Understanding (MoU) with Shell to evaluate CCUS opportunities in India. The partnership focuses on joint CO₂ storage studies and enhanced oil recovery assessments in key basins, including depleted oil and gas fields and saline aquifers.

Why CCUS implementation in India

- Climate Commitments and Net-Zero Target India has committed to achieving net-zero emissions by 2070 under the Paris Agreement.
- CCUS is crucial for decarbonizing hard-to-abate sectors like steel, cement, oil & gas and thermal power plants, where direct emission reductions are difficult.
- Coal-Dependent Energy Sector relies heavily on coal for 70% of its electricity generation.
- While renewable energy is growing, coal will continue to play a major role in India's energy mix for the next few decades.
- Industrial Decarbonization Cement, steel, oil refining, and fertilizers are CO₂-intensive and difficult to decarbonize without CCUS.

Comparative Adsorption of CO₂ and CH₄

- Studies conducted so far supports stronger affinity of CO₂ to the coal molecule.
- 2 to 3 molecules of CO₂ may displace one molecule of methane
- It means carbon dioxide is preferentially adsorbed onto the coal structure over methane (2:1 ratio).
- Methane sorption capacity for Indian coals has been investigated by CIMFR.
- Understanding controls on CO₂ and CH₄ adsorption in coals is important for the modeling of both CO₂ sequestration and CBM production.

POSSIBLE AREAS FOR DEEPER (>800M) LEVEL COAL RESOURCE

- Eastern part of Raniganj Coalfield
- Western part of Ib-River & Talcher Coalfield
- West-central and southern part of Mand-Raigarh Coalfield
- Central part of main basin, Singrauli Coalfield
- Eastern part of Birbhum-Rajmahal Coalfield
- Eastern part of Pench-Kanhan Coalfield
- Central part of north Godavari Coalfield

Carbon dioxide adsorption

Low Pressure N₂ Sorption Isotherms

Surface Area – used to estimate the amount of adsorbed gas

Pore Volume – porosity and estimating original gas in place

❖Pore Structure – pore geometries

Surface Area and Pore Structure

Pore Size Distributions - BJH Method

Barren Measures and Barakar shales exhibit porosity range less than 10 nm and the concentrations of pores decrease with the increasing of pore size.

 $\mathbf{D3}$

Fractal Characterization of Raniganj Shales

D1

D

D2

Scanning Electron Microscopy (SEM): Pore Classification – In Indian Shale

Composite inter-granular pores

Signal A = InLess

Mag = 26.95 K X

EHT = 5.00 KV

WD = 5.5 mm

Pore classification:

- a. Inter-granular pores
- b. Dissolved pores
- c. Composite inter–granular pores
- d. Hair line fractures

EHT = 5.00 KV

WD = 1.5 mm

Mag = 11.00 K.X

SEM Images of Coals from East Bokaro Coalfield

- a) Homogenised dissolved pores
- b) Macropores with secondary minerals infillings
- c) Thin pellets of kaolinite clay filled in organic matter containing macropores showing fissile bedding planes with interconnected pores through spacing
- d) Gelified organic matter destroyed pore network due to blocking effect of volatiles
- e) Rounded hollow deep macropores
- f) Intergranular pore structures contained by meso and macropores

Advanced Drilling Technology Providers

SI No	Name of Technology	Name of the Company
1	Horizontal Lateral/Multilateral Drilling	Weatherford, USA
2	Z- Pinnate	CDX-Gas,USA
3	Radial – Horizontal – Multilateral drilling	Gardes Energy,USA
4.	Dimaxian – Horizontal drilling	AJ Lucas & Mitchel drilling, Australia

Horizontal Drilling

- ·In-seam well lengths up to 4000ft
- Entry angle (50° to 90° from horizontal)
- •Bend angle of 7° per 100ft
- ·Intersection with vertical well is accomplished using magnetic guidance tool

Multilateral Drilling

Horizontal Vs Vertical Stimulation/Hydrofrac

Vertical Fracture Stimulation

Horizontal Fracture Stimulation

Permeability in Coalbeds

Porosity/Permeability with Depth

Dual Porosity and Flow Mechanism

· One dimensional flow diagram for illustrating reservoir flow models

ECBM - Field Experience

USA

- 1. Allison CO₂ ECBM Pilot Project
- 2. Location San Juan basin
- 3. Producer well 16
- 4. Injector well 4
- 5. Average depth 3100 feet
- 6. Permeability 100 md
- 7. Initial pressure 1650 psi
- 8. Temp. 160°F

Observations

- 1. CO₂ injection improved methane recovery from 77 to 95% of GIP
- 2. Ratio of injected CO₂ to produced CH₄ 3:1

Canada

- 1. Alberta Research Council
- 2. Location Fenn BIG Valley, Alberta Province
- 3. Producer well 1
- 4. Injector well -1

Observations

1. Injectivity improves with continued CO₂ injection and methane production

Japan

- 1. Operated by JCOAL
- 2. Location Yubari site, Ishikari Coalfield
- 3. Producer well 1
- 4. Injector well 1

Observations

- 1. Gradual increase of injection rate
- 2. 90% of injected CO₂ stored in coal seams
- 3. Gas production increase with CO₂ injection, and dropped after injection was stopped- indicating ECBM effect

CO₂ Storage – ESGR

Observations

- **Can pump CO**, with N₂
- ***** Effective permeability increase
- **\$** Linear flow indicates open fractures
- **❖** No migration of gas to monitor wells was observed

- Active injection testing occurred over 10 hour stretches for 3 days with allowances for pressure falloff.
- The injection rate was held at 2.5 tons of CO₂ per hour with the surface pressure response rising throughout an injection phase to 900+/- psi.
- The records for the monitor wells apparently do not show pressure changes that would indicate migration out of the completed zone (SS-#1A) or displacement of natural gas to surrounding wells (SS-#2 and SS-#3)

Simulation: CO₂ injection rate and Enhancement in CH₄ cumulative production

Development of System for Sorption-Induced Strain Measurement in Coal and Shale as a result of CO₂ injections

Screening Model for Change in Permeability as a Result of CO₂ Injection for Indian Coal and Shale Reservoirs

Strain versus time data

$$S = S_1 + \frac{S_L(t - t_1)}{t_L + (t - t_1)}$$

Where S is the calculated strain, S1 is the initial strain at the beginning of the pressure regime, S_L is the Langmuir strain, t is the time in hours, t1 is the time in hours at the beginning of the pressure regime, and t_L is the Langmuir time.

Both S_L and t_L can be obtained by fitting the data using least-squares analysis with a Langmuir curve when both S_4 and t_4 are zero.

Strain versus pressure curve

$$S = S_L \frac{p}{p + p_{S_L}}$$

Where S is strain, S_L is the Langmuir strain, p is the gas pressure and p_{SL} is the Langmuir strain pressure

Permeability model for laboratory

$$\frac{\pmb{k}}{\pmb{k}_0} = \pmb{e}^{3\left\{c_0\frac{1-e^{\alpha\left(p_p-p_{p_0}\right)}}{-\alpha} + \frac{3}{\phi_0}\left[\frac{1-2\nu}{E}\left(p_p-p_{p_0}\right) - \frac{S_{\max}p_L}{\left(p_L+p_{p_0}\right)}\ln\left(\frac{p_L+p_p}{p_L+p_{p_0}}\right)\right]\right\}}$$

Where k is measured permeability, k_o is the initial permeability of the coal core, c_0 is the initial fracture compressibility, α is the fracture compressibility change rate, p_p is the pore pressure, p_{p0} is the initial pore pressure, p_{p0} is the initial pore pressure, p_{p0} is the initial porosity, p_{p0} is the Langmuir strain, and p_{p0} is the Langmuir pressure.

Change in coal and shale properties

Stability of CO₂ Geo-Storage

The stability of stored CO₂, both short-term and long-term, is crucial for effective geo-storage. Short-term stability concerns the immediate behavior of CO₂ and the reservoir after injection, including initial movement and leakage risks. Long-term stability focuses on behavior over centuries, involving gradual migration and ongoing interactions between CO₂, fluids, and minerals.

Key factors influencing long-term stability include various trapping mechanisms that immobilize CO₂ within the reservoir. These mechanisms ensure secure containment and prevent CO₂ release into the atmosphere, making geostorage a vital strategy for mitigating greenhouse gas emissions.

∞ **Trapping Mechanisms Long-Term Stability Short-Term Stability** Crucial for immobilizing **Initial** distri-Gradual migration, ongoing movement, CO2 and ensuring secure, bution, immediate interactions, and long-term and permanent containment. leakage risks over centuries. leakage risks post-injection.

Stainless Steel High Pressure Autoclave Vessel for CO₂ Mineralization Study and Gas Chromatograph

Specifications for sample cell as below:

- Stain less steel cell body (SS316) should sustain pressure >150 kg/cm² (>2150 PSI) with minimum thickness of the wall not less than 6mm.
- Height of vessel 6" (inches) and Diameter 4" (inches-external) and approx. 3.5 inches (internal)
- · Cover should have inside thread with 'O' ring for gas tight
- Pressure gauge range 0 to 150 kg/cm² (>2150 PSI)
- · Gas loading valve one way (quick connector) (both male and female)
- · Gas vent valve for release of gas
- · System should be gas tight at high pressure
- · Flexible hose pipe for gas loading with necessary connectors
- Warranty; 2 years for vessel and attachments like valves and pressure gauges

Example: Flexible hose pipe for gas loading

Example: Gas loading valve one way (Male Quick Connector)

Samples for initiation of CO₂ mineralization in coal and shale/rocks

Thanks for Your Kind Attention...

